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COMPLEXITY AND COMPUTABILITY OF SOLUTIONS TO

LINEAR PROGRAMMING SYSTEMS

by

A. Charnes,* W.W. Cooper,**
S. Duffuaa,* M. Kress*

Abstract

Complexity, computability and solution of linear programming

systems are re-examined in the light of Khachian's new notion of

(approximate) solution. Algorithms, basic theorems and alternate re-

presentations are reviewed. It is shown that the Klee-Minty example

has never been exponential for (exact) adjacent extreme point algorithms

and that the Balinski-Gomory (exact) algorithm is polynomial where

(approximate) ellipsoidal "centered-cut-off" algorithms (Levin, Shor,

Khachian, Gacs-Lovasz) are exponential. Both the Klee-Minty and the

new J. Clausen example are shown to be trivial (explicitly solvable)

interval programming problems. A new notion of computable (approximate)

* isolution is proposed together with an a priori regularization for linear

programming systems. New polyhedral "constraint contraction" algorithms

are proposed for approximate solution and the relevance of interval pro-

gramming for good starts or exact solution is brought forth.
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INTRODUCTION

The interest aroused by L.S. Khachian's announcement in the

Soviet Doklady of "A Polynomial Algorithm for Linear Programming" and

the misrepresentations (particularly by journalists) of Khachian's

results, have induced the following re-examination of "informational

complexity" and its relationship to computability and solution of linear

programming systems. Contrary to journalistic pronouncements, Khachian's

result is an existence theorem for determining consistency or inconsistency

of a system of linear inequalities of a prescribed form. The algorithm

and proof of its geometric convergence is due to Levin sixteen years

earlier. Thus, Khachian's new contribution is an existence-theorem-backed

notion of "approximate" solution.

As is made clear in the following section on linear programming's

basic theorems and alternate representations, both complexity theory and

computational effectiveness are vitally affected by the different

geometries of "equivalent" linear programming systems. The

classic Klee-Minty example for exponentiality of the simplex

method (in their paper, "How Good is the Simplex Method?" [16]), is

generalized and re-examined. It is shown that the dual constraint set for

the generalization contains a single extreme point (which can be computed

in n pivots from an artificial start) and, therefore, has never been

exponential for "exact" solution by adjacent extreme point algorithms.

The classic Balinski-Gomory [2] polynomial bound algorithm for

distribution (or so-called "transportation") models is shown to be polynomial

where approximate solution by the ellipsoidal "centered-cut-off" algorithms

ii of Levin, Shor, Khachian and Gacs-Lovasz is exponential. A new example

We wish to thank Drs. L. Seiford, J. Godfrey and A. Schinnar for
| supplying us with copies of the Russian and Gacs-Lovasz works herein cited.
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by J. Clausen for simplex method exponentiality without the Klee-Minty

dual side defect is examined. Both it and a generalized K-M example

are shown to be instantly soluble as cases falling under Ben-Israel and

Charnes' explicit solution of full row rank interval programming problems [3].

With these examples of complexity and solution in mind, attention

is turned to computability of solutions. A new notion of a computable

(approximate) solution is proposed, together with an a priori regularization

for linear programming systems. To overcome the cumbersome storage and

updating disadvantages of the ellipsoidal algorithms as well as to provide

an empirically more rapid method, two new classes of polyhedral "constraint-

contraction" algorithms are proposed for approximate solution. For exact

solution of problems with exponential numbers of extreme points, it is

suggested that interval programming methods such as the Ben-Israel and

Charnes solution for a good start and the "knapsack-pivot" algorithm of

Charnes, Granot and Phillips [71 for completion of solution have been over-

looked and merit serious computational study.

1. BASIC REPRESENTATIONS AND THEOREMS IN

LINEAR PROGRAMMING

Solution of a linear programming problem implies securing both an

optimal member of the primal constraint set ("optimal solution") and an

Soptimal member of the dual problem constraint set. The purposes of

analysis by a linear programming model are served only when, with a

desired primal, the dual evaluators (optimal dual solution) are provided.

Since all the major exact (extreme point) algorithm computer codes deliver

an optimal dual pair, either of the dual problems may be chosen for"primal"

computation. Experience has shown that there may be tremendous

differences between the soeed of computation from primal and dual

problem sides.
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When we speak of a "linear programming system," we refer to

a system involving both primal and dual problems.

Re notation, we employ capital letters to denote matrices, lower

case letters to denote column vectors (except that a capital letter with a

subscript, e.g, Po, may also denote a column vector). By A. is meant the

.th .th T
j column of A and .A is the i row of A. c is the transpose of the

column vector c.

The major representations or formats for linear programming

systems we shall designate as "Tucker's form" (T), the "equalities form"

(E), and the interval programming form (I) as follows:

TT

max c x min wTb

(T) Ax_ b wTA-- cT

x0 x __0

TT
max c A mai u~p

0

T +T+ -T-
max c x min w b +  w b

(I) b- Ax!b +  (w+ - w-)TA = cT

+ -w - 0

Note that the latter LP can be written equivalently as

m luT (b++ b) *+ uT (b +-)

uTA cT

where lulT
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Next, letX =x: Axsb, x 0}, W=fw:wT A :cT w 0},

.A- {X: p)= Po* X-01} U ;{u:uTp 2 cT }

We shall require the following theorems.

LIEP Theorem (Charnes 1950): X # 0 is an extreme point of A

iff
{ P. : > 0} is linearly independent.

Duality States Theorem (Charnes & Cooper 1951): There are four

mutually exclusive and collectively exhaustive (MECE) duality states for (T):

(1) X=0, W=O

(2) X 0, inf wTb =
W

(2)T wi=

(3) sup c x= ,W =0
X

Sw* c x w*Tb rmin w~b

(4) Xw* E X W * W 3 max cTx c Tx * = m
X W

with x*, w* extreme points.

This theorem is valid, of course, for the other two linear programming

-forms on replacing X and W by the corresponding primal and dual

constraint sets, e.g., byAand U for the "equalities" (E) format.

Equivalent Inequality System: (C*, r)*) is a pair of optimal solutions to

the dual problems in (T) iff it is a solution to the linear inequality system:

-cTC + nTb -0

(TD)

-nTA :s--cT

-Te -nI s0

*.1
AI
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Explicit Solution Theorem (Ben-Israel and Charnes 1967):

If (I) has a finite optimum and A is of full row rank,

then the set of all optimal solutions of (1) is given by:

x* = A# z* , A# a right inverse of A

A >0

Z"whr b-i , if (cTA#). < 0
I

That "equivalent" linear programming problems may have

substantially different constraint geometries may be seen in the following

favorite example of K. Kortanek's. The primal problem (1.1) is a simple

2-node directed network problem. Its constraint set ,A , has one

extreme point. An equivalent dual problem (1.2) is of interval programming

form. Its constraint set U is an infinite strip in 2-dimensions, i.e., has

zero extreme points. Putting it back into equivalent (E) form, (1.3),

its new constraint set has five extreme points.

min 2X I + X
2  max -u I + u 2

1 s.t. - X1 + X2 -u 1 + u2  2

X I X = 1 u1 - 2  1

X 1 X 2 0

max -u 1  + U+2(1.2)
-1 -<-u 1 + u 2 _ 2
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max -v I  + + V2 - v2

s.t. -v + v1 + V2 - v + = 2

(1.3) + - + -V V17 + V7 2 +S 2 1

+
v. , vi, S 0, j = 1,2

The non-equivalence geometrically of different equivalent

representations of dual constraint sets was first pointed out and

studied by Charnes, Cooper and Thompson in [11]. Currently,

U. Eckhardt's work has yielded the most significant results. It and

references to the other major work are to be found in [12].

2. KHACHIAN'S SOLUTION AND LEVIN'S ELLIPSOIDAL
BISECTION METHOD

Consider the system of m ? 2 linear inequalities in n a 2 real

variables

n

(2.1) aij x. bi  , i=l....m

or, compactly,

T
1

When the a.. and b. are integers, the number of binary digits required

to store this data is

(2.3) L = 1 + log 2  + 1) + ( I  + 1) + 2(n)

We shall call the convex non-differentiable function

T
(2.4) e(x) max O.(x) , whereei(x) a . x - b.1 1 1 '

t1
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the "residual" at the point x of the system (2.1). Note that W(x) 5 0

for some x iff the system is consistent. Alternately, x is a member of

the constraint set iff it is a zero of the convex function

(2.5) 0(x) E max [0, (x))

Thereby, finding a solution to the system (2.1) is equivalent to the

convex programming problem of minimizing 0 (x) as well as to finding a

zero of 0(x).

N. Z. Shor of The Institute of Cybernetics of The Ukrainian

Academy of Sciences, whose published research on algorithms for such

problems, for instance, [ 191, [20], [21], [22], [23], extends continuously from

earlier than 1968 to the present, is cited in Khachian's 1979 Doklady

announcement [15] only for Shor's 1970 paper as the source of Khachian's

idea for an algorithm. However, Shor's 1977 paper plainly states that the

idea of and first proof of geometric convergence of a class of algorithms

which includes Khachian's is due to A.Y. Levin in the 1965 Doklady volume [17].

Levin's idea is to start with the center of an ellipsoid which

contains at least one solution to (2.1)if consistent. If this center is not

a solution, the ellipsoid is bisected by the most violated hyperplane and

the half-ellipsoid which contains a solution is enveloped by a new ellipsoid

of minimal volume. The center of this new ellipsoid is taken as a new

start and the process is repeated. This continues until the volume of the

attained ellipsoid is as small as desired. Shor calls such algorithms

"(ellipsoidal) centered cut-off" algorithms.

Khachian's existence theorem is implicit ij the follo;ng two

lemmas plus geometric convergence of the algorithm.
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Lemma 1: If the system (2.1) with input L is consistent, then there

exists a solution x0 in the Euclidean ball

S - x : Ilxll -5 2 L

Lemma 2: If the system (2.1) with input L is inconsistent, then for

any x E Rn the residual 0(x) - 2 - 2
- L

In 16 n2 L steps Khachian's algorithm delivers an ellipsoid center with

minimum algorithm residual :s 2 -L if the system is consistent. If not,

the residual remains greater than 2. 2 L . The final center defines what

we call Khachian's (new notion of) solution.

Since Khachian's announcement contained no proofs, Gacs and

Lovasz in [13] established Lemma 1 using the LIEP theorem and determinantal

bounds in Cramer's rule solutions of linear equations. They established

the other properties but for the following new ellipsoidal algorithm

which requires only 6n 2L steps and no Gram-Schmidt orthogonalization

at each step.

Gacs and Lovasz define a sequence x , x ..... R and a

sequence of symmetric positive definite matrices A 0 , A . recursively

0 o L k kkas follows x = 0, A = 2 1. Suppose that (x ,A k ) is defined. If xk is

a solution of (2.1), stop. If not, pick any inequality in (2.1) which is

violated, say,

a. x > b.
1 1

and set k
= X + n+ 1

a k Aa.(2.6)

Ak+1 n A' 2 (Akai).(A kai)T

n2_1 n+ T
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Note that (Ak a) (Ak ai ) T is a symmetric nxn matrix as the matrix product

of an nxl vector and its lxn transpose. Gacs and Lovasz note further

that all computations, e.g. square root, are supposed performed to an

accuracy of exp(-lOnL).

For linear programming the x vector is the (4, n) pair of dual

problem variables in the system (T). We exhibit the simplex method

and Lemke's Dual Method schematically (Figure 1) in (Co) space by projection

from their (E) form variables. When consistent, i.e., case (iv) of the

Duality States Theorem, the constraint set consists with probability one

of a single point, i.e., the dual LP problems which have a unique optimal

pair of solutions form an everywhere dense open set in the space of

consistent data.

nTA > cT

A45 b
2! 0

nDoo

Figure 1

- -i-
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3. COMPLEXITY OF A GENERALIZED KLEE-MINTY 1 EXAMPLE

We do not accept the re-definition of complexity (or "informational

complexity" as the Soviets call it) which Khachian implicitly makes in (151

as the function of "' required to bound the iumber of iterations of an

algorithm. Mlost inequality systems or linear programming problems are

and have been given in terms of coefficients which are not necessarily

integers. Further, all the classic results on complexity, e.g., Klee and

Minty [161 or Balinski and Gomory [ 2 ], are given "in Jack Edmond's

sense" as "the number of pivots or iterations required... (as a).. .function

of the two parameters... (number of equations plus inequalities and number

of variables)... tat specify the size of the program" (see p. 159 of

Klee and Minty). We shall use Edmond's sense.

We generalize the Klee-Minty example by replacing their "c" by

arbitrary "e.'s" where 0< i<i/2, all i. Their problem is then:
1

max x
n

s.t.

-x 1< 0

(3.1) X I< 1

Il~X2  < 0

EI Xn +XX2 < 1

' o . nn- Xn < 0

E n- iXn-1 + xn < 1

jIts (unstudied) dual is:

1We wish to thank George Minty for his friendly help in providing
a copy of the published paper.

I .
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min Wl+  + w2+ + + W+

2 + n2

+ +1

!: s. t.

-w - + W+
+ + E W + C +  -0

w2 - + W 2+ + E:2 w2 + E:2 w2 +  -0

(3.2)

-wn-1 n-il n-i Wn+Cn-lWn 0

- +
-W + w -1

n n
- +

wj j 0 J 1, n

We choose to analyze and solve this problem from the dual side

with the modified simplex method of Charnes and Lemke (1952 [10], [ 5 1).

Notice from the last equation that every member of the dual constraint set

muthae + >0-
must have I n > 0 (e.g., w +>1). Therefore, it must have w 1 > 0,

and successively Wn-2 ' Wn 3  . . w1  > 0. But the coefficient vectors

of w1 - , w Wn form a linearly independent set which, further,

is maximal since there are n of them. By the LIEP Theorem we have an

extreme point and by maximality (in every solution) it is the only one.

It is the optimum solution to (3.2) since we are in case (iv) of the

Duality States Theorem.

By the theory of the modified simplex method the optimal primal

solution is x*T dTB- 1 , where B is the matrix of coefficient vectors of

- , + dT
W1 " n-i Wn and is the vector of their coefficients in the

functional. Here x* =x 2 * =...=X* 1  0, x* 1. Thus, we have

established

A
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Theorem 1: The dual constraint set of the generalized Klee-Minty

problem is a cone issuing from a single extreme

point. The optimal primal solution is available by

inverting the matrix of the basis designated by this extreme

point.

The number of operations to invert B and obtain x* is clearly

0(n 3 ) Thereby, if we are permitted knowledge of the dual extreme

point, we have shown polynomiality of the simplex method for this example

class by solving the dual problem.

If we are required to be ignorant of it, we next show that in

n steps from a standard artificial basis, we achieve this extreme point,

and automatically, of course, the corresponding primal optimum.

In no way does our result invalidate the soundness of the idea

behind Klee and Minty's construction of a tilted, perturbed hypercube,

which, as the intersection of 2n half-spaces, has 2 nextreme points.

Thereby, if one must start "at the bottom," an adjacent extreme point

algorithm on the primal side must take 0(2 n) steps.

To get on with our simplex computation, we consider the dual

"~regularized" problem ([I 4 1,[5 1) in the form:

minMm A + Me Tv+ cTA
0

(.) S. t. P 0A 0+ Ev + PA P0

(34 0 0

Here the X., j * 0, are the dual variables wk w +k of (3.3),
T Ik k

cT the vector of functional coefficients, P the structural matrix, P 0 its

right-hand side vector and E the nx(n-1) matrix of the first n-i unit
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(artificial) vectors, M is the "high" or non-Archimedean penalty "cost."

Oddly, here, P0 is the n t h unit vector.

Starting with the artificial basis of P and the n-I unit vectors0
2of E, V1 .... V n- 1 ' whose functional coefficients are respectively M , M

M, and using the basis entry criterion of maximum "z.-c.", the initial

(abbreviated) simplex tableau is:

A,
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C144

4 c -

+ b

c4

I I
'~ +~~-

041

-C'

134 w'

C14 M..

04 (3 -

04 4

C- 4 +4

04 0 -04

-44 t I
0 I~ W

> ~ >



15

Here P., P. are the respective column vectors of the variables w1, w,

and we only show the column vector for "A ", e.g., P in the tableau.

+ 2
Only wn , wn have M in their "z.-c.", and since

P+ n Po0 + cn1V n-1(3.5) n

P- -P+ c Vn o n-1 n-1

we have

+ + 2
z(w) - c n M + 0(M)

(3.6)
z(w) - C -N1I + 0(M)

n n

Thus, P+ enters the basis. Vn 1 leaves since 0 /cn_1 < 1/1 (correspondingnn

to Vn 1 and P ).
+ P = - 2 + P + TuwhePo P +

SinceEnVn Pn P Pn -2P P. Thus while P 0 P n

are in the basis

(3.7) z(w) - c n  -2M 2 + 0(M)
n n

and P will not be a candidate to enter.
n

Next, the only "M2 " entry possibilities are

+ -1 + -I
n-1 = n-2 Vn 2 + nn- P0 

(3.8)
- -1e + E 1 pi
n-1 = n-2 n-2 - n-1 n n- 1 P

Thus, Pn-1 enters and Vn- 2 leaves the basis.-

Thereafter, while Pn1 Pn P are in the basis
n n 0

+ -1 + 1
n- n-1 2

n -1 n n-i

(3.9) ++ -1 2
Z(Wn-_1) - Cn_ 1 = -2n- 1 M + 0(M)

j and Pn 1 will not enter the basis.

An
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-+
By induction, for 1 5 k sn-2, when Pn-k'" P ' + ' Poare

in the basis, Pn-k-i enters and Vn-k-i leaves. Further, P+ wi' n-k-1i

not enter while P- Pn- ,P P are in the basis.
n-k-1 ""P-' n-i ' n o

For k n-2, V1 is removed and P'2*P- n-i' p P0 is the

basis. Now

S -1 P2 - (E E ' -2 ) n-i ( n- P + (E" l

(3.10)
+ CI (6 .-- P- -1 + (E . -1 P+ --(E: .En 1

1 1 2 1" )n-1 n-i 1 " n 1" * n- o

Thus, P1 enters and P leaves. In n pivots the unique optimal extreme

point has been attained together with (via the modified simplex machinery)

the optimal x* as the dual evaluators for this extreme point.

We have established

Theorem 2: The generalized Klee-Minty problem is computable in n steps

by the (modified) simplex method applied to the dual problem

from a standard artificial basis start.

Thereby, the Klee-Minty problem has never been an example for

exponentiality of the simplex method.

As for approximate or Khachian solution, if we take cn 2' n

L = 0 ( 2n) and the ellipsoidal algorithms are exponential.

Our above argument is still valid, however, since only order

comparisons, not exact values, are needed for the "z-c 1 " in the simplex

(or dual) algorithms. Further, Charnes and Cooper have shown explicitly

in [ 5 1 how simplex or dual method calculations can be made using even

non-Archimedean "M" 's by extending the simplex tableau by two rows

containing respectively the coefficients of M2 and M and never requiring

numerical values for M2 or M in calculation.

4--
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The classic result of Balinski and Gomory [2 ] for polynomiality

(in exact solution) of an extreme point method for the important class of

2
distribution models in linear programming, is that via their "mutual

primal-dual algorithm" oniEa m min {min} steps are required to solve:

n cij xij

(3.11) ij

s. t. xij = ai  ,i=1 ....,m

Sxij = bj , j=l,... ,n
i

where x 2_ 0

and the a. ,b. are integers.

Since, as before, only order comparisons are needed, not

numerical values, the Balinski-Gomory method is polynomial where the

Khachian approach is exponential in examples of (3.11) with some

= 0(2 2n). It should be noted, however, that the Balinski-Gomorycij=

algorithm requires a start with a particular kind of primal and dual

variable choice.

4. INTERVAL PROGRAMMING, KLEE-MINTY AND

J. CLAUSEN EXAMPLES

At a recent meeting in Denmark, Dr. Jens Clausen of the

Datalogisk Institute presented a new example for exponentiality of the

simplex method which we observe to be free of the dual side defect of

the Klee and Minty type. We shall show that both it and the generalized

2We wish to thank Ralph Gomory for his friendly help in locating
their paper.

A
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Klee-Minty example are instantly soluble by the Ben-Israel and Charnes

theorem in interval programming, i.e., only one matrix inverse need be

* computed.

Consider first the Klee-Minty type. It may be written in pseudo

interval programming form as:

min xn

0 s: x I1--

Z E1x E x +x211- 11 -i-l+X2 -2-

(4.1)

2 x E 1_Xn_ + x

Next we replace the left-side vector by any consistent final vector b,

e.g., bl.=0, i=l,... ,n, so that we have an interval programming problem.

The point of this is that, referring to the Ben-Israel and Charnes

T -1 - +* theorem, only the signs of the c A. I and not the values of b. and b.

determine optimal solution. Here

F'(4.2) A.

and we can write A - 1 = En- 1 En- 2 ... E I where Ek is the elementary matrix

which adds - k times the kth row of A to the (k+i)th row of A. From the

form of A, Ek affects only the kth column of A.

We can now easily calculate eTiA -  Since cT (0,... ,0,1),

I;; eTEn- 1 - (0... O,-En_1,1)

(4.3) cTEn- 1En-2 = (0,...O,-cn2,-2n-l, 1)

cTEn-1 .... E1 = (-E 1 ,-E 2 . ... - l, 1)
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* - +
Therefore, zi  b_=0, i=1,...,n-1, z* = b  =1. From x*=A z* we get

n n

x.=0, i=l... ,n-1, x*=l, which already satisfies (4.1). It is optimali n
for (4.1) since b =O yields a less restricted constraint set than in (4.1).

Let us next consider Dr. Jens Clausen's example which was

presented at the Danish-Polish Operations Research Societies meeting at

Rolighed, Denmark in May 1979:

n
max E cjxj

j=1
(4.4)n ns.t. E .x i- I i~l

E a 5 , i=,...n
j=1 1xj>

where, dropping a factor of 4-5, cj=(4/5) j , and A- (a..) is a lower

triangular matrix with all ai. =1 and ai=2.(5/ 4 ) i - j for i >j. Schematically,

max x+ x + (.)_x3 + ............ +( x

S.t.

+ x 2

(4.5) 2 2 I + 5)x2  + x < 5 2

(4) (4~) x1  x3+

n- (,,-n
2 x1 + 2(4) x2 n-i . .x3  . ... -2 xn  n

with xlI...xn >10
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.4 i-i

Since A < 0 and x 0, we can choose to "have" b. = a..x.I j=l a i 1x 1

in an interval programming "envelope." Thereby we would have x4' = 0

whenever cTA 1 < 0. We next ignore the x -> 0 conditions to consider

the less restricted interval programming problem:

max c x ]
(4.6)

b < Ax <b

where b- is implicitly designated as above and b + = , i =1,...,n
1

Since A is lower triangular, again Ek differs from the identity

matrix only in the kth column and we can apply the same product

k Ticonstruction as before but with different entries in the E to obtain c A

T T n-1 T T n-2 TTThus, defining c (1) z c En
, c(2) r c (1)E -

,... ,c(n- 1 ) s eT(n-2)E 1 ,

we have c (c 1 ... ci 1 , ci(i-i) ..... (i), n).

Thereby, c T(1) = (c 1 9 ... Cn2, Cn- an,n i cn, cn)

cT(2) = (c 1i .... Cn3 Cn-2an-l.n-2 Cni(1), cni(1), c)

etc.

For Clausen's example we obtain

cTA- 1 c =
cAn cn(5

cT ~1  4 ni (4 n-i

(4.7)

- and n2 n2(

cTAi = Ci(n-i) = (_l)n_1i ,i=i1 ... ,n

Thus, z* - b+ z = b , z* +
sn-i -i n-2 b b 2  etc., i.e., we alternate b + and

b starting from b n and ending with bi or b according as n is odd or

even. Since x* = 0 whenever z.* = bi, the remaining components of x*,
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say x*, are obtained as

i* D d

where D is A with those it h rows and columns removed for which x* = 01

and d is the similar contraction of the b + vector.

The new device we have employed above to obtain an approximating

(class of) interval programming problem(s) for which we have instant

solution of the Minty-Klee and Clausen examples is really a method for

obtaining a "good" start in an interval programming approach to solution

of linear programming problems. Such a start would be the first step

in using an interval programming algorithm like the "knapsack pivot"

algorithm of Charnes, F. Granot and F. Phillips [ 7 ] or the SUBOPT

algorithm of Ben-Israel and Robers [181, or the "primal" algorithm of

Charnes, D. Granot and F. Granot [ 6]. We shall develop this new

method in other publications.

5. COMPLEXITY, POLYNOMIALITY AND COMPUTABILITY

What is the relationship of complexity and polynomiality to

computability of solutions? The Balinski and Gomory polynomial algorithm

for distribution problems was never used; its bound on number of

iterations was two orders of magnitude worse than common computational

experience on real problems. Their 12-iteration example [2 ] was solved

immediately by the VAM "start" (see p. 58 [ 5]).

An essential requirement in complexity proofs is the capacity to

argue by mathematical induction. To achieve this, Balinski and Gomory

discovered a separability characteristic In the distribution model constraint

set. They were unable to achieve polynomiality for their "mutual primal-

dual" algorithm for general linear programming because of the lack of

'4
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separability, hence inductibility. Complexity research thus focuses attention

only on algorithmic forms which are "inductible."

In the literature there seems to be a common misapprehension

*. that complexity (and polynomiality) is an efficient research directive to

better methods of solving "worst" case problems. Yet, as A. Vazsonyi

observes, for over a century the most efficient method of computation

of various functions has been through non-convergent (hence a priori

"hyper-exponentially complex") asymptotic series. Of course, one can

then change the definition of solution, just as some authors have redefined

convergence to include non-convergence.

Again, Gomory's brilliant finitely convergent integer programming

algorithms frequently converge too slowly for practical use. Often, the

evidently exponential "branch and bound" method is employed effectively.

Focusing on polynomiality, R. Jeroslow [14] published two exponential

examples for branch and bound. No information regarding structure (e.g.,

asymmetries or branch exclusions) such as is accessible where "BAB" is

effectively used is provided for these examples. Hence, we think, no

computer specialist would ever contemplate use of BAB for such problems.

Incidentally, both examples (for all n) require at most 2 iterations of the

"Page-Cut" interval programming based algorithm of Armstrong, Charnes

and Phillips [ I].

Typically, complexity research ignores important characteristics of

real computation. Rather than "worst" case solution, we would argue that

it struggles primarily with "imposed problem ignorance." Khachian deals

with Turing machines, not computers. Actual operations such as storage1and retrieval, list processing, Gram-Schmidt orthogonalizations, updating

and control of round-off error are dismissed as inconsequential since they

are polynomial in complexity.

A
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I.

But polynomial algorithms such as Khachian's can be totally

impractical for computation of realistically sized problems. Even for

small examples, N. Z. Shor's every other paper mentions the

slowness of convergence to approximate solutions. The world largest

routinely solved linear programming problem (on UNIVAC 1108's by the

U.S. Treasury Department's Computer Group) involves 50,000 constraints

(excluding non-negativity) in 62.5 million variables. This distribution

(assignment) model is solved with software developed by Klingman,

Glover, Stutz, Karney, Barr and students [ 8 ] over nearly ten years

of systematic experimentation and processing innovation exploring the

whole spectrum of network model algorithms. The algorithm is the

simplex algorithm in [ 5 1 provided with a good start (but worse than VAM,

which, though polynomial, takes too much time).

Re computability, clearly, if one can get a good start for an

adjacent extreme point method, it doesn't matter how many extreme

points there are in the constraint set. Since most real models are

compounds of already identified types of model structures, one should use

such knowledge to develop classes of good starts via simple approximating

structures. One might try approximate solution methods, too, when the

observed structures are not so transparent. Then, if exact solution is

required, one could "purify" the approximate solutions to extreme point

solutions by methods such as the "Purification Algorithm" of Charnes,

Kortanek and Raike [9], [9a].

Our previous demonstrations have indicated the power of interval

programming methods for obtaining good starts as well as their promise

for efficient solution of types of problems which do not fit network

structures very well. Since interval programming methods like the "knapsack
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pivot" algorithm largely employ the highly developed computer processing

software modules of the simplex method, we suggest computational research

in interval programming is likely to be highly productive.

6. CONSTRAINT CONTRACTION ALGORITHMS

Since the work of Charnes, Cooper and Drews over twenty years

ago (see Chapter XVIII fr 6 of [ 5 ], especially pp. 693-695), little research

has been done on computation of LP problems via the inequality system

(TD). Their research was aborted by Drews' leave from ESSO to complete

his Ph.D. at Berkeley. The current work, however, features ellipsoidal

constraint set envelopments. For, Shor and associates have been trying

to develop algorithms for convex non-differentiable programs which employ

analytic function approximants, of which the simplest are quadratic.

Ellipsoids, however, furnish bad approximations to polyhedral constraint

sets in n dimensions. This may substantially increase computation time.

For, although the constraint sets here are mostly a single (unknown)

point, the bisection process involves at each step closest envelopment of

a partly polyhedral set.

Our idea is to start with the "smallest" homothetic expansion of

the constraint set which contains our initial starting point. "Balls" of

size 2 L are not usually required; only max I bi1. Thereafter, each step
1i

concludes with a homothetic contraction and a new starting point. We

present two types of algorithms, exlerior (reflection) algorithms and

* interior (centering) algorithms. In both we stop when a sufficiently

close "solution" (and constraint approximation) has been reached.

• ' To give some idea of relative speeds, the following examples of

inequality systems (not even LP) have been computed (by hand).

kia
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Consider the system

22 - 1 X-- 2- 1

(6.1) 1

22- 1-x 2 ---2
4 - 1

or, equivalently,

< 2 3 -x 1  52-

-x < -2 2 + 1
<12+

(6.2) 4x 2 _- 1

-x2  -23 + 1

Here L = 19. Khachian's algorithm requires more than 40 iterations,

Gacs-Lovasz more than 18, whereas our "curtailed reflection" algorithm

requires only 2, from the same start of (0,0).

Replace this system by the inconsistent one

x 1  2 2

-x <-23 + 1
(6.3)4

2-
i-x 2 <-23 + 1

Then Khachian requires 1146 and Gacs-Lovasz 456 iterations to establish

* inconsistency.

Evidently, the ellipsoidal algorithms would greatly benefit if

they could always deal with an equivalent consistent system. We, therefore,

present the following "regularization" of the general linear programming

system (T) according to the precepts and results of Charnes (1952) in [4 ].

i,
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max c T - Mmo min nTb +f° U

s.t. AT+ bco b 9TA + oe T _ T

(6.4) T T

0 ~n,n 0 ::1o

where M -ic 11.2L+ U- VFn 2L+1)

Both primal and dual constraint sets are consistent (C = 0, C° = 1; n = 0,

no = max cj) so that case (iv) of the Duality States theorem holds.

To demonstrate consistency of the original system (T) to whatever

degree of approximate solution is desired, one need merely obtain a

member of the (TD) constraint set with Eo0--S-1. We thus define a

"Curtailed Solution of Degree (a,O)" to be a member of the constraint

set of the new (TD) wherein the coefficients in (T) have been curtailed

to precision of 2
- a and magnitude of 2. We suggest that this notion of

solution may be useful in matters of approximate solution.

Exterior (Reflection) Algorithms

The reflection of a point on the "wrong" side of a constraining

hyperplane to the "right" side of it yields a point at lesser distance to the

constraint set (see Chapter XVIII of [ 5 ]). The amount of distance

reduction depends chiefly on the "thickness" (diameter) of the set and

the pre-reflection distance to it. In our C (constraint contraction)

algorithms a balance is sought between rapid contraction of set size and

maintenance of closeness to the constraint set.

When the vectors a in (1.2) are taken so that a = 1,I th
is the distance from x to the i hyperplane. Addition of the same

constant to all bi results in an expansion or contraction of the constraint
b'lI
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set so that the distance from the center of the set (e.g., the generally

unique member of (TD), see figure 1) to each hyperplane is changed

by the same amount for all hyperplanes, i.e., it generates a homothetic

transformation of the set about the center.

Each algorithm generates a sequence of points x , x , x 2

k 1x .... and a sequence of right hand sides b, b 1 ,...,bk ... , where

bk = b + eAk , where JAk I- 0 . The point xk satisfies

(6.5) aT xk - bk -  i=1, ... n1

and Ak (hence bk) is chosen so that x k is outside the constraint set of

(6.6) a Tx s bk

Westp tN N
We stop at x when I A is sufficiently small.

The constraint contraction process proceeds as follows. Start

with some x° . If x° satisfies (1.2), stop. If not, choose A0 so that

mfax (aT x °  b. - ) =0, i.e., Ao ax(a.xo .).SetA 3 .i - i - ai ( T x-bi) 4e

Then, x is outside {x:aTx < b' }. Recursively, having obtained x

within {x:aT x < bk }, then mPax (aTk - b) PkAk, where

0 < P < 1. Choose Ak+ 3 k k Then xkis outside {x:aTx < b

we apply our chosen reflection procedure to get x k + within the latter set.

The simplest procedure reflects in the most violated (variant :any

violated) hyperplane, i.e., the hyperplane with normal a T where

T k k T k k kT- T kk vka r x - b r= max (a x - b P. Next set v T =-a r and z1(k) k +

where a 1 is chosen so that aT z (k)- bk -(aT xk  bk). Thereby
t r r r r

(6.7) a=2(ax k bk

r
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1th ,, T k 1 k+1If z(k) is in the "k set" {x:a x < bk}, set z(k) = x

If not, reflect z (k) to obtain z2(k), etc. until some z (k) is in

and then set zm(k)-x

To get into the kth set more rapidly, one might use "curtailed"

reflection or "guided" reflection. In curtailed reflection one proceeds

no farther than the most distant un-violated hyperplane s such that

aT a < 0. I.e., one takes s so thats r

(6.8) bk - aT k = max (bk a T xk)
5 S I+  1

r
where I+ = {i:b k - aTk > 0 and a

r 1 1 1ar

For zl(k) not to violate s, one must have

bk T  k
5 g

(6.9) a1 < T a

s r
bk aT k

Thereby a1 is chosen as min 2(a xk  Tb s s
[2ar rb) r-a s ar

k.In guided reflection one reflects x in hyperplane r, but moves

Tin the direction of a . Thus

aT (xk + i bk =_aT xk bka r(Xa 4alas) b= ( x -b

so

T k k-2(a rx -b
(6.10) 1  T

a ar s
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Interior (Centering) Algorithms

In our interior "centering" algorithms we start each iteration,
;" T - k

say k, with a point x k on the boundary of the kth set [x:a x< b .

We attempt to move to the center of the constraint set by moving out

from the boundary in a direction vk , to be defined. Thus, we consider

k xk +avk and try to find a best (reasonably computable) value

for a. For the kth set (and bk) we define di(x) = - 0i(x). Thus,

(6.11) d.(z k) = b.k - aT (x k +av) = d(x k) -aa T vk

Define
10o {i:di(xk){iak> *- Tk

Ik - -x01k, V =  i:aTvk > 0, Vk{i:aT vk < 01

In order that zk remain within the kth set, we must have

di(z ) > 0. By (6.11), this is true iff aTvk < di(xk). Letting r

be such that

dr(x) min di(xk)
(6.12) ~k =VT; k T vk

a rv k av

This reduces to
d r(xk)

(6.13) a T<
r

tfor zk to remain in the set.

We define the "push-off" direction from the boundary, vk, as

,, follows : f (-1)a, if 1i1 1> n

k

(6.14) vk= E (-1)ai, otherwise, where iUkUCk = n

IkUCk

and Ck= i:ICkI= n- 11I and di(xk) < d (xk) for j and Ck



30

We must have 0 < ai < dr (x kIa r v k To "center" as well as

possible we want to choose ai in this interval so that we

(6.15) max min d (z k

Let s c 1 0 be such that

(6.16) -a T k < -aT vk Vic I

Then s corresponds to the line of minimum slope from the set10
r

in the following plot:

* (6.17) dr

+ r

r r

Evidently, it would be fairly complicated to exactly choose ai

to max min d I(z k), e.g., 6. Thus, we choose

(6.18) a = a =d (xk )(sT vk, T vk
r x /jr v Ia v

or, even more simply, if desired,

(6.19) ai= d - d(x k)/a T v k
2 r rk+1 k__~

Then, xk+ z and we choose Ak~ as the minimum A> 0 such

thtdz)~0, where d,(zk means we use not bi, but b I + A. The

iteration Is complete in taking bk~ bi +1

.M G
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CONCLUSION

In the foregoing, we have attempted to show through key

examples in the context of Khachian's and related work the in-

appropriateness and misguided character of "complexity" as a guide

to worthwhile directions of research in computability of mathematical

programming (especially LP) systems. We have tried to indicate

better directions and have suggested explicitly methods which might

* improve computation in both approximate and exact solution. Let us conclude with

two further examples of "computability" versus "complexity" approaches.

* First, L .E. Woolsey observed that he always got extremely

large times for geometric programming calculations whenever constraints

were slack in the final solution . He , therefore , added additional

variables and a corresponding small perturbation of the functional to

insure that all constraints were satisfied as equalities. Result: great

improvement in computational speed. Further result: R .J. Duffin

and associates developed new, simpler proofs of geometric programming

theory using the Woolsey perturbation and ordinary Lagrangean theory.

Finally, in the earliest days of linear programming computationi

oil company computer groups observed that they got excessive times

in general LP calculations whenever there were zeros in the right hand

side vector. Computability solution: Introduce a new variable and equation

constraint, xn+1 = 1 and add multiples of it to the constraints with

zeros to knock them out. Result: great improvement in computation

time. Although this device is part of the folklore, many newcomers

to computation are still unaware of It.

Oddly, there is a historical perspective for it. Gauss, in trying

to improve computation of the usually (we would call) ill-conditioned
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systems of linear equations involved in geodetic or magnetic problems,

introduced an additional variable and equation which would increase

the value of the determinant (hence the condition of the system) over

that of the old system. This helped. Gauss apparently hit upon such

a device since he himself performed actual computation.

LL.
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